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Metal  halide  perovskite  light-emitting  diodes  (PeLEDs)
show  great  potential  in  ultra-high-definition  displays,  due  to
their  narrowband  emission,  wide  color  gamut  (~140%),  and
cost-effective  solution  processability[1].  Thanks  to  scientists'
tremendous  efforts,  the  external  quantum  efficiencies  (EQEs)
for  the  state-of-the-art  PeLEDs  emitting  near-infrared  and
green  light  have  reached  21.6%[2] and  23.4%[3],  respectively.
However,  blue  PeLEDs,  as  one  of  the  essential  technologies
for perovskite-based high-resolution monitors and white light-
ing,  are still  inferior  to their  red and green counterparts.  Blue
emission  is  usually  achieved  by  using  dimensional  engineer-
ing  (quantum  confinement)  or  composition  engineering
(mixed  halides,  e.g.,  mixed  Br/Cl)  strategies.  For  example,
quasi-two-dimensional  (2D)  perovskites,  nanocrystals  (e.g.,
quantum dots, QDs) or nanoplates, give blue emission due to
quantum  confinement  effects.  However,  achieving  pure-blue
(465–475  nm)  and  deep-blue  (420–465  nm)  light  from  quasi-
2D  perovskites  is  challenging[4],  while  ultra-small  QDs  and
nanoplates suffer from high surface trap density and poor sta-
bility[5]. For PeLEDs based on mixed Br/Cl perovskites, the emis-
sion peak can be tuned easily,  but  these perovskites  face the
disadvantages  of  phase  separation  and  deep  energy-level  Cl
vacancies[4].

Scientists  have  made  great  efforts  to  develop  high-per-
formance  blue  PeLEDs.  Dong et  al.  made  sky-blue  PeLEDs
based  on  CsPbBr3 QDs,  in  which  the  emission  shifts  from
green  to  sky-blue  as  CsPbBr3 changes  from  bulk  to  QDs  be-
cause  of  quantum  confinement  (Fig.  1(a))[6].  They  designed  a
bipolar  shell  consisting  of  an  inner  anion  shell  and  an  outer
molecules  shell,  which can promote carrier  transport  and de-
crease  trap  density  in  QDs,  thus  stabilizing  QDs  (Fig.  1(b))[6].
The  PeLEDs  based  on  the  optimized  QDs  gave  an  EQE  of
12.3% with electroluminescence (EL) peak at ~480 nm, which
is one of the highest value for blue PeLEDs (Fig. 1(c)). This effi-
ciency was obtained under low current density (<10–1 mA/cm2)
and  luminance,  and  decreased  with  increasing  current  dens-
ity (Fig. 1(c)). Chu et al. introduced a large cation CH3CH2NH3

+

(EA)  into  quasi-2D  perovskites  to  enlarge  the  bandgap,  thus
realizing  blue  emission.  The  PeLEDs  based  on  quasi-2D
perovskites  gave  an  EQE  of  12.1%  with  sky-blue  EL  peak  at
488 nm[7]. More recently, Karlsson et al. developed a vapor-as-
sisted  crystallization  (VAC)  technique  to  prepare  mixed  hal-

ide  perovskite  films  (Cs1.2FA0.3Pb(Br1–xClx)3.5, x =  0.3–0.57),
which  mitigated  local  compositional  heterogeneity  and  ion
migration  (Fig.  1(d)),  thus  obtaining  stable  blue  emission  at
490–451 nm (Fig.  1(e))[8].  The  PeLEDs  gave  EQE of  11.0% and
5.5%,  with  emission  peaks  at  477  and  467  nm,  respectively
(Fig. 1(f)).

Sky-blue  (480–490  nm)  PeLEDs  present  advances  in  EQE
(>10%) and luminance (>4000 cd/m2), but the efficiency and lu-
minance  for  pure-blue  and  deep-blue  (420–475  nm)  PeLEDs
are  much  lower.  Though  the  passivation  strategies  could  re-
duce  Cl– vacancies  in  pure-blue  and  deep-blue  mixed  halide
perovskite  nanocrystals,  leading  to  high  PLQY  and  efficient
PeLEDs[9],  they  still  suffer  from  poor  stability  and  low  lumin-
ance.  Recently,  Bi et  al.  proposed  a  new  strategy,  in  which
acid  etching  and  ligand  exchanging  were  combined  to  yield
stable CsPbBr3 QDs with high PLQY (97%) and ultra-low trap-
density, giving pure blue emission (465 nm) (Fig. 2(a))[10].  This
strategy  avoids  the  issues  for  mixed  halides  and  yields  pure
blue  emission.  The  PeLEDs  based  on  these  QDs  gave  pure-
blue EL at 470 nm with an EQE of 4.7% (Fig. 2(b)), correspond-
ing  to  the  Commission  Internationale  de  L'Eclairage  (CIE)  co-
ordinates  (0.13,  0.11)  which  meets  the  requirement  of  Rec.
2020  display  standards.  Notably,  the  device  gave  a  lumin-
ance of 3850 cd/m2, which is one of the highest brightness re-
ported  for  pure-blue  and  deep-blue  PeLEDs[10].  Furthermore,
the PeLEDs exhibited a half-lifetime exceeding 12 h under con-
tinuous  operation  (Fig.  2(c)),  being  a  record  value  for  blue
PeLEDs[10].  Dissimilarly,  Wang et  al.  made  efficient  pure-blue
PeLEDs  base  on  mixed  halide  perovskite  nanocrystals  film[11].
They adopted dual ligands, 2-phenylethanamine bromide (PE-
ABr)  and 3,3-diphenylpropylamine bromide (DPPABr),  to con-
trol  the growth of  CsPbClBr2 nanocrystal  films (Fig.  2(d)).  This
method  can  narrow  down  the  quantum-well  width  distribu-
tion  (Fig.  2(e)),  suppressing  non-radiative  recombination.  The
PeLEDs offered an EQE of 8.8% with emission peak at 473 nm
(Fig. 2(f)).

In  summary,  blue-emitting  perovskite  materials  and
devices  have  become  a  research  hotspot  in  recent  years.
Though  the  EQE  for  sky-blue  PeLEDs  has  exceeded  10%,  the
pure-blue  and  deep-blue  PeLEDs  suffer  from  low  efficiency
and  luminance.  And  the  poor  stability  is  a  bottleneck  for  the
application of PeLEDs[12].  There is a large room for enhancing
the performance of blue PeLEDs.
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Fig.  1.  (Color  online)  (a)  EL  spectra  for  blue  PeLEDs.  (b)  Schematic  illustration  of  the  bipolar-shell-stabilized  perovskite  QDs.  (c)  EQE  for  blue-
PeLEDs made with bipolar-shell-stabilized QDs. Reproduced with permission[6], Copyright 2020, Nature Publishing Group. (d) Schematic illustra-
tion of the mechanism for halide redistribution. (e) EL spectra (Left) and CIE color coordinates (Right) for VAC-treated, Rb-incorporated PeLEDs.
(f) EQE for Rb-device as a function of current density. Reproduced with permission[8], Copyright 2021, Nature Publishing Group.
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Fig. 2. (Color online) (a) Schematic illustration of ligand exchange process driven by acid etching. (b) PL for QDs films and EL for PeLEDs. (c) T50 for
PeLEDs with an initial luminance of 102 cd m-2. Reproduced with permission[10], Copyright 2021, Wiley Publishing Group. (d) Schematic diagram
for DPPABr-based and PEABr-based CsPbClBr2 nanocrystal films. (e) Steady-state PL and absorption spectra for CsPbClBr2 films. (f) EL spectra for
PeLEDs under forward biases of 3.6, 4.4, and 5.2 V. Reproduced with permission[11], Copyright 2020, Nature Publishing Group.
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